Image Segmentation

پردازش تصویر با پایتون قسمت سیزدهم

OpenCV Threshold

بخشبندی تصویر (Image Segmentation)

هدف پردازش تصویر دیجیتال، استخراج اطلاعات مفید(آبجکت، شی، ۲۵۵، ۱، روشن) از تصاویر، بدون کمک انسان است.

بخشبندی،  تصویر را به ناحیه هایی با پیکسل هایی که دارای ویژگیهای مشابه(منظم و یکنواخت) هستند، تقسیم میکند.این ویژگی ها میتوانند به عنوان مثال: سطح خاکستری، رنگ، بافت و … باشند. در بخشبندی تقسیم تصاوبر به نواحی  غیر یکسان میباشد، طوری که با هم اشتراکی نداشته باشند تا آن را برای تجزیه و تحلیل آسان تر و معنادارتر کند.

 

 

خروجی بخشبندی

 

۱) پیکسلهای لبه یا مرز یک بخش. کاربرد:  گوشه ها یا حالت  ناحیه ی مد نظر  را مشخص میکند.

۲) تمام پیکسلهای درون یک بخش. کاربرد: ویژگیهای درونی بخش های تصویر مثل بافت، رنگ و … را مشخص میکند.

لبه: به تغییرات ناگهانی در سطوح خاکستری، تصویر لبه گفته میشود. لبه ها در مرز بین دو ناحیه اتفاق می افتد. 

 

تکنیکهای بخشبندی

۱)  contextual (بخش بندی بر اساس لبه ها):  تصویر،  با آشکار کردن نقاط یا مرزهایی که در محل آنها،  تغییرات سریع سطوح خاکستری وجود دارند، بخش بندی میشود. 

Contexuall

۲) non-contextual (بخش بندی بر اساس نواحی): بر اساس شباهت سطوح خاکستری ، تصویر،  در ابتدا با آستانه گذاری، ناحیه را گسترش داده و با ادغام کردن  بخش ها، بخشبندی میشود. همین جا اشاره کنم که آستانه گذاری از نوع non-contextual میباشد.(ماسکهای آشکار ساز لبه ها، همانند فیلتر بالاگذر حوزه فرکانس  که در قسمتهای بعدی توضیح داده میشوند، میباشند.)

non

 

کاربرد بخشبندی

به عنوان مثال، با استفاده از بخشبندی، میتوان تعداد مربع یا مستطیل را در تصویر شمرد. یا تشخیص چهره ، تشخیص عابر پیاده، اثر انگشت و … را انجام داد. از طرفی گاهی اوقات اصلا لازم نیست برای کسب اطلاعاتی از یک عکس کل تصویر را پردازش کرد. به همین دلیل با استفاده از بخش بندی فقط ناحیه مورد نظر پردازش میشود.

آستانه گداری تصویر چیست؟

 

آستانه‌گذاری  مناسب‌ترین و ساده ترین تکنیک بخش بندی non-contextual است.
با اعمال آستانه‌گذاری بر روی تصویر در مقیاس خاکستری، تصویری باینری(۰و۱) بدست می‌آید که تصویر به دو بخش کاملا جدا از هم تقسیم میشود.یکی از آنها حاوی پیکسل هایی با مقادیر داده ورودی کوچکتر از آستانه و دیگری مربوط به مقادیر ورودی است که برابر آستانه یا بیشتراز آن هستند. مناطق اول و دوم معمولا به ترتیب با برچسب صفر (۰) و غیر صفر (۱) برچسب گذاری می شوند. آستانه گذاری ، ممکن است دارای چند آستانه باشد که تصویر را به چند بخش مجزا تقسیم میکنند.

برای تصاویر رنگی، سه آستانه(برای هر کانال) باید مشخص شود.

به عبارت دیگر آستانه گذاری شامل تقسیم یک تصویر به دو منطقه است: یک منطقه آبجکت و یک منطقه پس زمینه.
threshold e

تصویر زیر را با دقت مشاهده کنید:

threshold

https://www.learnopencv.com

چند عدد می بینید؟
اکثر شما اعداد زیر را می بینید:
۳۲ (آه، بله، به دقت نگاه کنید)، ۶۴، ۱۰۰، ۱۲۸، ۱۸۰، ۲۰۰ و ۲۵۵٫ اما در تصویر، اعداد بیشتری وجود دارد که به چشم نمیاد.

برای دیدن یک نسخه آستانه گذاری از تصویر اصلی، روی تصویر حرکت کنید .   متوجه خواهید شد که تمام اعداد، سرتاسر  سفید هستند (به عنوان مثال، آنها دارای یک مقدار خاکستری ۲۵۵ میباشند ) و عدد اضافی ۵ وجود دارد. شما متوجه  عدد ۵  در تصویر اصلی  نشدید چون ارزش خاکستری آن ۵ بود.

در حقیقت تمام اعداد در تصویر اصلی یک مقدار خاکستری  برابر با عدد دارند. بنابراین ۲۵۵ روشنترین و ۵ تاریک ترین است.

 خواندن اعداد در تصویر آستانه گذاری شده  آسان تر از خواندن اعداد در تصویر اصلی است. جای تعجب نیست که یک الگوریتم  تصویر آستانه گذاری شده، بسیار ساده تر از تصویر اصلی،  پردازش می کند.
تمام الگوریتم های آستانه گذاری، یک تصویر منبع (src) و مقدار آستانه (thresh) به عنوان ورودی میگیرند، و با مقایسه مقادیر پیکسل در پیکسل  تصویر منبع (x، y) با آستانه،  یک تصویر خروجی (dst) تولید می کند. اگر src (x، y)> thresh باشد، سپس (dst (x، y یک مقدار را تعیین می کند. در غیر این صورت، (dst (x، y مقدار دیگری را ایجادمی کند.

سه روش آستانه ‘گذاری داریم که در قسمتهای بعدی توضیح داده خواهند شد:
+ Simple thresholding
+ Adaptive thresholding
+ Otsu’s thresholding

 

پردازش تصویر با پایتون قسمت دوازدهم

 

Grayscale(خاکستری)

دوربین های قدیمی فقط  قادر به نمایش تصاویر مونوکروم  یا تک رنگ  بودند. درکل سنسور دوربین تنها شدت نور را ثبت میکند که شدت نور طیفی خاکستری ایجاد میکند.

ما با تصاویر خاکستری که نوعی از تصاویر مونوکروم هستند،  کار خواهیم کرد.

http://hamamatsu.magnet.fsu.edu

تصاویر خاکستری فقط دارای یک کانال رنگی(۸بیتی) در مقیاس ۰ تا ۲۵۵ هستند که نشان دهنده روشنایی آن پیکسل است، ۰ کاملا تاریک (سیاه) و ۲۵۵ کاملا روشن (سفید) است.


87

وقتی فیلتر های رنگی بر روی سنسور دوربین قرار میگیرد به ازای هر رنگ قرمز ، ابی  یا سبز ،  یک شدت  نور جدا (خاکستری) درست  میکنند که با ترکیب آنها با هم عکسهای رنگی ایجاد میشوند.

تصویر زیر مثال خیلی خوبی  از کانالهای مختلف تصویر رنگیاست، که با یکی از نرم افزار های ویرایش عکس که من از gimp استفاده کردم را ببینید.  در واقع با ترکیب کانالهای سمت راست، تصویر رنگی سمت چپ ایجاد میشود:

مثلا به رنگ سبز دقت کنید، فقط قسمتی که رنگ سبز داریم سفید وبقیه قسمتها سیاه است. کانال سبز  یک کانال ۸ بیتی که به صورت   [۰,۲۵۵,۰]:rgb مقدار دهی میشود و نشان دهنده این است که هر چه شدت نور به سمت ۲۵۵ باشد رنگ سبز بیشتر و هر چه به سمت ۰ باشد رنگ سبز کمتری داریم و در مورد کانالهای دیگر هم همین استدلال را میشه کرد.

Capture

تبدیل تصویر به مقیاس خاکستری به ما یک  آرایه  دو بعدی و تنها یک کانال که ۸ بیت باشد  میدهد. یک جورایی پردازش راحتر و سریع تر و زوم روی یک کانال خاص است.

import numpy as np
import cv2
import matplotlib.pyplot as pltimg = cv2.imread(‘test.jpg’)
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
#تصویر خاکستری به عنوان آراه ای دوبعدیprint(gray_img)
[[۲۵۰ ۲۵۰ ۲۵۰ …, ۲۵۰ ۲۵۰ ۲۵۰]
[۲۵۰ ۲۵۰ ۲۵۰ …, ۲۵۰ ۲۵۰ ۲۵۰]
[۲۵۰ ۲۵۰ ۲۵۰ …, ۲۵۰ ۲۵۰ ۲۵۰]
…,
[۲۵۰ ۲۵۰ ۲۵۰ …, ۲۵۰ ۲۵۰ ۲۵۰]
[۲۵۰ ۲۵۰ ۲۵۰ …, ۲۵۰ ۲۵۰ ۲۵۰]
[۲۵۰ ۲۵۰ ۲۵۰ …, ۲۵۰ ۲۵۰ ۲۵۰]]
>>> print (gray_img.shape)
(۶۴۰, ۶۴۰)
>>> print (img.dtype)
uint8

import numpy as np

import cv2

import matplotlib.pyplot as plt

img = cv2.imread(‘test.jpg’)

gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

plt.imshow(cv2.cvtColor(gray_img, cv2.COLOR_GRAY2RGB))

plt.show()

grayscale

تبدیل به تصویر خاکستری

 

پردازش تصویر با پایتون قسمت یازدهم

تغییر فضاهای رنگ- opencv

هدف

در این آموزش،  نحوه تبدیل تصاویر از یک فضای رنگی به دیگری را  یاد خواهیم گرفت، مانند: BGR \leftrightarrowGray, BGR \leftrightarrow HSV  ، 
علاوه بر این، یک برنامه ایجاد می کنیم که ۳ شیء رنگی را از یک تصویر استخراج کند، و با توابع زیر آشنا خواهید شد:
()cv2.cvtColor () ، cv2.inRange  .

 

در OpenCV بیش از ۱۵۰ روش تبدیل فضای رنگ وجود دارد. اما تنها دو مورد که بیشتر مورد استفاده قرار می گیرند، به BGR ↔ Gray و BGR ↔ HSV را توضیح میدهیم .


برای تبدیل رنگ، از تابع (cv2.cvtColor (input_image، flag استفاده می کنیم که در آن پرچم نوع تبدیل را تعیین می کند.

برای تبدیل  BGR →Gray   از پرچم cv2.COLOR_BGR2GRAY و برای BGR → HSV، از پرچم cv2.COLOR_BGR2HSV استفاده می کنیم. .
برای دریافت پرچم های دیگر، فقط دستورات زیر را در ترمینال پایتون خود اجرا کنید:

>>> import cv2
>>> flags = [i for i in dir(cv2) if i.startswith('COLOR_')]
>>> print flags

 

 (HSV)

یک فضای رنگی مناسب، مدل رنگی HSV است. در این مدل، رنگ دارای ۳ویژگی متمایز است:

Hue: نام رنگ (زرد، سبز، صورتی و..)
Value: روشنایی یا تیرگی رنگ (خاکستری)
Saturation or intensity اشباع یا شدت نور  : خلوص رنگ، روشنایی یا تاریکی ( طیف رنگی قرمز).

نکته

در فضای رنگ HSV، محدوده رنگ [۰،۱۷۹]، محدوده اشباع [۰،۲۵۵] و محدوده مقدار [۰،۲۵۵] است. نرم افزار های مختلف از مقیاس های مختلف استفاده می کنند. بنابراین اگر مقادیر OpenCV را با آنها مقایسه کنید، باید این محدوده ها را نرمال کنید.

 

مدل رنگ HSV چه کاربردی دارد؟

 مثلا اگر  بیخواهیم  قطعاتی از یک تصویر که در محدوده رنگ آبی یا  قرمز یا سبز  قرار دارند را شناسایی کنیم از این مدل استفاده میکنیم.

در HSV، رنگ آمیزی ساده تر از BGR رنگی است. 

 

 

 

hsv

 

hsv2

hsv3hsv4
  بنابراین در اینجا روش به شکل زیر است:

برنامه،  تصویر را بگیرد
تبدیل از فضای رنگ BGR به HSV انجام دهد.
ما تصویر HSV را برای طیف وسیعی از رنگ آبی وقرمز و سبز، آستانه گذاری(در جلسات بعدی آموزش داده میشود.) میکنیم:
در حال حاضر تنها ۳ شیء آبی و سبز و قرمز را استخراج می کنیم، می توانیم هر آنچه را که می خواهیم انجام دهیم.
کد:

 

import cv2
import numpy as np
img = cv2.imread('bgrtohsv.png')
#تبدیل فضای رنگ bgr to hsv
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV )

lower_blue = np.array([110,50,50])
upper_blue = np.array([120,255,255])

lower_green = np.array([50,50,50])
upper_green = np.array([60,255,255])

lower_red = np.array([0,50,50])
upper_red = np.array([0,255,255])
#آستانه گیری(cv2.inRange())
maskb = cv2.inRange(hsv, lower_blue, upper_blue)
maskg = cv2.inRange(hsv, lower_green, upper_green)
maskr = cv2.inRange(hsv, lower_red, upper_red)
 # and تصویر اصلی با ماسک 
#میشود (cv2.bitwise_and())
resb = cv2.bitwise_and(img,img, mask= maskb)
resg = cv2.bitwise_and(img,img, mask= maskg)
resr = cv2.bitwise_and(img,img, mask= maskr)

cv2.imshow('original image',img)
cv2.imshow('maskb',maskb)
cv2.imshow('maskg',maskg)
cv2.imshow('maskr',maskr)

cv2.imshow('resb',resb)
cv2.imshow('resg',resg)
cv2.imshow('resr',resr)

cv2.waitKey()
cv2.destroyAllWindows()
 

rgbtohsv

 

نکته

 نویز کمی در تصویر وجود دارد. خواهید دید که چگونه آنها را در قسمتهای  بعد حذف میکنیم. این ساده ترین روش در ردیابی شی است.

 

برای پیدا کردن مقادیر HSV چکار باید کرد؟

بسیار ساده است و شما می توانید از همان تابع ()cv2.cvtColor  استفاده کنید.

برای مثال، برای پیدا کردن مقدار HSV سبز، دستورات زیر را در ترمینال پایتون امتحان کنید:

>>> green = np.uint8([[[0,255,0 ]]])
>>> hsv_green = cv2.cvtColor(green,cv2.COLOR_BGR2HSV)
>>> print hsv_green
[[[ ۶۰ ۲۵۵ ۲۵۵]]]

اکنون شما می توانید [H-10، ۱۰۰،۱۰۰] و [H + 10، ۲۵۵، ۲۵۵] را به ترتیب پایین تر و بالاتر محدوده رنگ  قرار دهید.

به غیر از این روش، می توانید از هر ابزار ویرایش عکس مانند GIMP یا هر مبدل آنلاین برای پیدا کردن این ارزش ها استفاده کنید.

اما فراموش نکنید که محدوده های HSV را تنظیم کنید.

image -processing-python-opencv

تقسیم و ادغام کانال های تصویری با opencv

۱- دسترسی به مقادیر پیکسل و تغییر آنها
۱-۲- img.shape
۱-۳- img.size
۱-۴- img.dtype
۲- Image ROI
۲-۱- تقسیم و ادغام کانال های تصویری با opencv
۲-۲- ساخت مرز و حاشیه برای تصاویر
۳- تبدیل هندسی تصاویر
۳-۱- Translation 
۳-۲- Rotation
۳-۳- Affine Transformation


تقریبا تمام عملیات در این بخش به طور عمده به Numpy بیشتر از  OpenCV مربوط می شود. دانش خوبی از Numpy برای نوشتن کد بهینه سازی بهتر با OpenCV لازم است.
* (نمونه ها در ترمینال پایتون نشان داده می شوند، زیرا اکثر آنها فقط کدهای خطی هستند)

 

دسترسی و تغییر مقادیر پیکسل – opencv

اجازه دهید یک تصویر رنگی را بار اول بگذاریم:

import cv2
import numpy as np
img = cv2.imread('img2.png')

شما می توانید از طریق مختصات ردیف و  ستون به یک مقدار پیکسل دسترسی پیدا کنید. برای تصویر BGR، آرایه ای از مقادیر آبی، سبز، قرمز را باز می گرداند. برای تصویر خاکستری ، فقط شدت  نور  متناظر بازگشته است.

px = img[100,100]
  print (px)
 [۲۴۷ ۲۵۳ ۲۳۴]
 blue = img[100,100,0]
 print (blue)
 ۲۴۷
  green = img[100,100,1]
  print(green)
 ۲۵۳
 red = img[100,100,2]
  print(red)
 ۲۳۴

شما می توانید مقادیر پیکسل را به همین شیوه تغییر دهید. به عنوان مثال :


 img[20,20] = [0,0,0]
 print (img[20,20])
 [۰ ۰ ۰]
point

تغییر مقدار پیکسل

 

هشدار

Numpy یک کتابخانه بهینه سازی شده برای محاسبات سریع آرایه است.
به سادگی دسترسی به هر یک از مقادیر پیکسل انجام میشود و اصلاح آن بسیار کند است و دلسرد کننده است.

نکته

روش فوق به طور معمول برای انتخاب یک قسمت  از آرایه استفاده می شود،مثلا میگویند: ۵ ردیف اول و ۳ ستون آخر آن .

برای دسترسی به پیکسل های تکی، متدهای  آرایهNumpy ،  () و array.itemset () array.item   بهتر است در نظر گرفته شود. اما همیشه یک اسکالر را برمیگرداند. بنابراین اگر میخواهید به تمام مقادیر B، G، R  دسترسی داشته باشید، باید با استفاده از array.item () به طور جداگانه برای همه صدا بزنید.

روش دسترسی و ویرایش بهتر پیکسل:

 img.item(20,20,2)
 ۰
 img.item(10,10,2)
 ۲۳۵
 img.itemset((20,20,2),100)
 img.item(20,20,2)
 ۱۰۰

img.shape

خواص تصویر شامل تعداد ردیف ها، ستون ها و کانال ها، نوع داده های تصویر، تعداد پیکسل ها و … است.

ویژگی های هر تصویر، توسط img.shape قابل دسترسی است. که شامل تعدادی از ردیف ها، ستون ها و کانال ها (اگر رنگ باشد)، است:

 print (img.shape)
 (۶۴۰, ۶۴۰, ۳)

توجه داشته باشید،اگر تصویر سیاه و سفید است، ویژگیۀ فقط تعداد ردیف ها و ستون ها را شامل می شود. بنابراین یک روش خوب برای بررسی اینکه آیا تصویر لود شده رنگ سیاه یا سفید است یا خیر.

img.size

 

تعداد کل پیکسل ها توسط img.size قابل دسترسی است:

 print (img.size)
 ۱۲۲۸۸۰۰

 

img.dtype

نوع داده تصویر توسط img.dtype بدست می آید:

 print (img.dtype)
 uint8

نکته

توجه داشته باشید img.dtype بسیار مهم است در اشکال زدایی، زیرا تعداد زیادی از خطاها در کد های  OpenCV-Python، ناشی از نوع داده معتبر است.

 

Image ROI

Region of Interest، همان طور که از نام آن مشخص است، یعنی منطقه ای از تصویر که توسط ما انتخاب می شود. دلیل این کار، این است که ما به جای انتخاب کل تصویر، فقط ناحیه ای که لازم است را مورد پردازش قرار می دهیم که باعث افزایش کارایی و سرعت در پرازش می شود. غیر مثال زیر نمونه بارز استفاده از این عملیات، تشخیص پلاک خودرو است.

گاهی اوقات، باید با یک منطقه خاص از تصاویر بازی کنید.
برای تشخیص چشم در تصاویر، اول تشخیص چهره در سراسر تصویر انجام می شود و هنگامی که چهره به دست آمد، ما تنها یک منطقه چهره را انتخاب می کنیم و به دنبال آن، چشم ها را در داخل آن تصویر، جستجو می کنیم. roi ، دقت را بهبود (چون چشمان همیشه روی چهره ها هستند) و عملکرد (به دلیل اینکه ما برای یک منطقه کوچک جستجو می کنیم) را افزایش میدهد.

در اینجا من با انتخاب الله در تصویر و کپی کردن،  آن را به یک منطقه دیگر در تصویر منتقل کردم:

import cv2
import numpy as np
img = cv2.imread('img2.PNG')
allah = img[105:190,435:521]
img[79:164,1:87] = allah
img[544:623,115:194] = [0,255,0]
img[544:623,17:96] = [255,0,0]
img[544:623,212:290] = [0,0,255]
cv2.namedWindow('My Image', cv2.WINDOW_NORMAL)
cv2.imshow('My Image',img)
cv2.waitKey(0)
Image ROI

Image ROI

 

تقسیم و ادغام کانال های تصویری  با opencv

گاهی اوقات شما باید جداگانه در کانال های B، G، R کار کنید. سپس شما نیاز دارید برای تقسیم تصاویر BGR به یک تک کاناله:

b,g,r = cv2.split(img)
blue =cv2.split(img)[0]
green=cv2.split(img)[1]
red = cv2.split(img)[2]
import cv2
import numpy
import matplotlib.pyplot
image = cv2.imread("img2.png",1)
print(image.shape)
b,g,r = cv2.split(image) # the order is not r,g,b
cv2.namedWindow("Image", cv2.WINDOW_NORMAL)
cv2.imshow("Image",image)
cv2.namedWindow("ImageR", cv2.WINDOW_NORMAL)
cv2.imshow("ImageR",r)
cv2.namedWindow("ImageG", cv2.WINDOW_NORMAL)
cv2.imshow("ImageG",g)
cv2.namedWindow("ImageB", cv2.WINDOW_NORMAL)
cv2.imshow("ImageB",b)
cv2.waitKey(0)
cv2.destroyAllWindows()
Region of Interes

Region of Interes

یا بعضی وقتها، ممکن است نیاز به پیوستن این کانال های فردی و تبدیل آن به  تصویر BGR باشید:

img = cv2.merge((b,g,r))
یا
b = img[:,:,0]

فرض کنید شما می خواهید تمام پیکسل های قرمز را صفر کنید
شما نیازی به تقسیم کردن این کار ندارید و آن را برابر صفر قرار دهید. شما می توانید به راحتی از Indexing Numpy استفاده کنید و سریع تر است.

img[:,:,2] = 0

شما می توانید تبدیل رنگ قرمز به سیاه را  به سادگی انجام دهید:

 

import cv2
import numpy as np
img = cv2.imread('img2.PNG')
b,g,r = cv2.split(img)
img = cv2.merge((b,g,r))
b = img[:,:,0]
img[:,:,2] = 0
cv2.namedWindow('My Image', cv2.WINDOW_NORMAL)
cv2.imshow('My Image',img)
cv2.waitKey(0)
Region of Interes

Region of Interes

 

 

هشدار

cv2.split () یک است  عملیات پر هزینه  (از لحاظ زمان) پس فقط اگر شما به آن نیاز دارید. در غیر اینصورت برای شاخص کردن Numpy بروید

 

ساخت مرز و حاشیه برای تصاویر

اگر می خواهید حاشیه ای در اطراف تصویر ایجاد کنید، چیزی شبیه یک قاب عکس، شما می توانید از تابع ()cv2.copyMakeBorder  استفاده کنید. اما این تابع کاربردهای بیشتری برای عملیات کانولوشن، صفر کردن و غیره دارد. این تابع با استفاده از آرگومانهای های زیر عمل می کند:
src – تصویر ورودی

top, bottom, left, right:  تعداد پیکسل ها در جهت های مربوطه

borderType: – پرچم  برای تعریف اینکه چه نوع حاشیه ای اضافه می شود. می تواند انواع زیر باشد:

cv2.BORDER_CONSTANT : حاشیه رنگ ثابت را اضافه می کند. ارزش باید به عنوان آرگومان بعدی داده شود.

cv2.BORDER_REFLECT : مرز بازتابی از عناصر مرزی است، مثل این: fedcba | abcdefgh | hgfedcb

cv2.BORDER_REFLECT_101 یا cv2.BORDER_DEFAULT – همانند بالا، اما با تغییر جزئی، مانند این است: gfedcb | abcdefgh | gfedcbacv2.BORDER_REPLICATE

cv2.BORDER_REPLICATE – آخرین عنصر در سراسر تکرار شده است، مانند این: aaaaaa | abcdefgh | hhhhhhh

cv2.BORDER_WRAP – نمی توان توضیح داد، به نظر می رسد: cdefgh | abcdefgh | abcdefg
value – رنگ مرزی اگر نوع مرزی cv2.BORDER_CONSTANT باشد
در زیر یک کد نمونه برای نشان دادن تمام این انواع مرز برای درک بهتر است:

قطعه کد زیر از  from matplotlib import pyplot as plt  برای نمایش استفاده کرده است.

 

import cv2
import numpy as np
from matplotlib import pyplot as plt
yellow = [255,255,0]
img1 = cv2.imread('openCV (1).png')
img2 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
replicate = cv2.copyMakeBorder(img2,10,10,10,10,cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img2,10,10,10,10,cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img2,10,10,10,10,cv2.BORDER_REFLECT_101)
wrap = cv2.copyMakeBorder(img2,10,10,10,10,cv2.BORDER_WRAP)
constant= cv2.copyMakeBorder(img2,10,10,10,10,cv2.BORDER_CONSTANT,value=yellow)
plt.subplot(231),plt.imshow(img2,'gray'),plt.title('ORIGINAL')
plt.subplot(232),plt.imshow(replicate,'gray'),plt.title('REPLICATE')
plt.subplot(233),plt.imshow(reflect,'gray'),plt.title('REFLECT')
plt.subplot(234),plt.imshow(reflect101,'gray'),plt.title('REFLECT_101')
plt.subplot(235),plt.imshow(wrap,'gray'),plt.title('WRAP')
plt.subplot(236),plt.imshow(constant,'gray'),plt.title('CONSTANT')
plt.show()
copy-Make-Border

ساخت مرز و حاشیه برای تصاویر

در قطعه کد زیر از opencv برای نمایش استفاده شده است:

 

import cv2
import numpy
image = cv2.imread("openCV.png")
BLUE = [255,0,0]
replicate = cv2.copyMakeBorder(image,10,10,10,10,cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(image,10,10,10,10,cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(image,10,10,10,10,cv2.BORDER_REFLECT_101)
wrap = cv2.copyMakeBorder(image,10,10,10,10,cv2.BORDER_WRAP)
constant= cv2.copyMakeBorder(image,10,10,10,10,cv2.BORDER_CONSTANT,value=BLUE)
#cv2.imshow("image",replicate)
#cv2.imshow("image",reflect)
cv2.namedWindow('My Image', cv2.WINDOW_NORMAL)
cv2.imshow("My Image",reflect101)
#cv2.imshow("image",wrap)
#cv2.imshow("image",constant)
#cv2.imshow("image",image)
cv2.waitKey(0)

 

در قطعه کد زیر نوشتن یک متن، رسم چند ضلعی، دایره ، مستطیل و یک خط نمایش داده شده است:

import numpy as np
import cv2
img = cv2.imread('carr.jpg',cv2.IMREAD_COLOR)
print(img.shape)
cv2.line(img,(0,0),(100,100),(255,255,255),5)
cv2.rectangle(img,(0,100),(100,200),(0,0,0),5)
cv2.circle(img,(63,250), 63, (0,255,0), -1)
pts = np.array([[10,100],[40,50],[50,10],[30,10]], np.int32)
pts = pts.reshape((-1,1,2))
cv2.polylines(img, [pts], True, (255,100,0), 3)
font = cv2.FONT_HERSHEY_SIMPLEX
# def putText(img, text, org, fontFace, fontScale, color, thickness=None, lineType=None, bottomLeftOrigin=None):<br data-jekyll-commonmark-ghpages="" />cv2.putText(img,"I Iove Lamborghini!",(200,40), 0, 0.8, (255,100,0), 3, cv2.LINE_AA)
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
ساخت مرز و حاشیه برای تصاویر

ساخت مرز و حاشیه برای تصاویر

 

در این قطعه کد: تعداد کانال نوع تصویر با استفاده از if( در تصاویر رنگی img.shape  دارای ۳ مقدار طول، عرض و تعداد کانال میباشد ولی در خاکستری دیگر تعداد کانال را مشخص نمیکند و ۲ مقدار دارد
)  تصویر خاکستری را از رنگی تشخیص میدهد. شما میتوانید با استفاده از تصویر خاکستری نتیجه دیگر بگیرید:

import numpy as np
import cv2
image = cv2.imread('carr.jpg',cv2.IMREAD_COLOR)
print(image.shape)
print(image.shape[2])
if image.shape[2] == 2:
print("Gray Image")
elif image.shape[2] == 3:
print("RGB Image")
print(image.size)
print(image.dtype)

۳
RGB Image
۶۵۸۳۵۹
uint8

 

 

تبدیل هندسی تصاویر

تبدیلات (Transformations)

OpenCV دو تابع تبدیل، cv2.warpAffine و cv2.warpPerspective را فراهم می کند که  شما می توانید تمام انواع تبدیلات را داشته باشید. Cv2.warpAffine یک ماتریس تبدیل ۲×۳ را در حالی که cv2.warpPerspective یک ماتریس تبدیل ۳×۳ را به عنوان ورودی می گیرد.

Scaling

 

Scaling  فقط تغییر اندازه تصویر است ،OpenCV ، تابع ()cv2.resize  برای این منظور عرضه می کند.اندازه تصویر را می توان بصورت دستی مشخص کرد، یا می توانید فاکتور مقیاس را مشخص کنید.  روش های مختلفی استفاده می شود.

روش های مختلفی استفاده می شود. روش پیشنهادی cv2.INTER_AREA برای کاهش و (cv2.INTER_CUBIC (slow و cv2.INTER_LINEAR برای بزرگنمایی است. به طور پیش فرض، تابع cv2.INTER_LINEAR برای همه اهداف تغییر اندازه است.

در  کد زیر سایز تصویر را ۲ برابر کردیم:

import cv2
import numpy
import matplotlib.pyplot
image = cv2.imread("car.jpg")
print(image.shape)
# def resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None): # real signature unknown; restored from __doc__
#res = cv2.resize(image,None,fx=2, fy=2, interpolation = cv2.INTER_CUBIC)
# or
height, width = image.shape[:2]
res = cv2.resize(image,(2*width,2*height), interpolation = cv2.INTER_CUBIC)
cv2.imshow("image",res)
cv2.waitKey(0)
cv2.destroyAllWindows()

Translation 

Translation جابجایی شی از یک مکان به مکان دیگر. اگر می دانید تغییر جهت (x، y)، با اجازه  آن را (tx، ty) قرار می هیم، شما می توانید ماتریس تبدیل M به شرح زیر ایجاد کنید:

 

M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix}

Translation

می توانید آن را به یک آرایه Numpy از نوع np.float32  تبدیل و بعد آن را به تابع ()cv2.warpAffine  منتقل کنید. مثال زیر را برای شیفت به مکان (۱۰۰،۵۰) زیر را ببینید:

 

import cv2
import numpy
import matplotlib.pyplot
image = cv2.imread("car.jpg")
print(image.shape)
rows,cols = image.shape[:2]
M = numpy.float32([[1,0,100],[0,1,50]])
dst = cv2.warpAffine(image,M,(cols,rows))
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow("image",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
Translation 

Translation

هشدار
آرگومان سوم تابع ()cv2.warpAffin  اندازه تصویر خروجی است که باید در فرم (عرض، ارتفاع) باشد.
به یاد داشته باشید عرض = تعداد ستون ها، و ارتفاع = تعداد ردیف.

 width = number of columns, and height = number of rows.

Rotation

چرخش یک تصویر برای زاویه تتا به دست می آید توسط ماتریس M تبدیل فرم.

M = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}

Rotation

اما OpenCV چرخش مقیاس پذیر با مرکز قابل تنظیم چرخش را فراهم می کند به طوری که شما می توانید در هر مکانی که ترجیح می دهید چرخش دهید.
ماتریس تبدیل اصلاح شده است:

\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot center.x - \beta \cdot center.y \\ - \beta & \alpha & \beta \cdot center.x + (1- \alpha ) \cdot center.y \end{bmatrix}

Rotation

 

\begin{array}{l} \alpha = scale \cdot \cos \theta , \\ \beta = scale \cdot \sin \theta \end{array}

Rotation

 

برای پیدا کردن این ماتریس تبدیل، OpenCV تابع cv2.getRotationMatrix2Dرا فراهم می کند، .

 مثال زیر را بررسی کنید که تصویر را به اندازه  ۹۰ درجه میچرخاند:

 

import cv2
import numpy
import matplotlib.pyplot
image = cv2.imread("car.jpg")
print(image.shape)
rows,cols = image.shape[:2]
#or
# rows,cols,_ = image.shape
#or
#rows,cols,ch=image.shape
M = cv2.getRotationMatrix2D((cols/2,rows/2),90,1)
dst = cv2.warpAffine(image,M,(cols,rows))
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow("image",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

Rotation

Rotation

 

Affine Transformation


در تبدیل شکل ، تمام خطوط موازی در تصویر اصلی هنوز در تصویر خروجی موازی هستند.

برای پیدا کردن ماتریس تبدیل، ما نیاز به سه نقطه از تصویر ورودی و نقاط  متناظر خود را در تصویر خروجی داریم. سپس cv2.getAffineTransform یک ماتریس ۲×۳ ایجاد می شود که به cv2.warpAffine منتقل می شود.

 

import cv2
import numpy
import matplotlib.pyplot
image = cv2.imread("carr.jpg")
print(image.shape)
rows,cols = image.shape[:2]
pts1 = numpy.float32([[50,50],[200,50],[50,200]])
pts2 = numpy.float32([[10,100],[200,50],[100,250]])
M = cv2.getAffineTransform(pts1,pts2)
dst = cv2.warpAffine(image,M,(cols,rows))
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow("image",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
Affine-Transformation

Affine-Transformation

Perspective Transformation

برای Perspective Transformation، شما نیاز به یک ماتریس تبدیل ۳×۳ دارید. خطوط راست هم حتی پس از تغییر نیز باقی خواهند ماند.برای پیدا کردن این ماتریس تبدیل، شما نیاز به ۴ نقطه در تصویر ورودی و نقاط متناظر در تصویر خروجی دارید. ماتریس تبدیل را می توان با عملکرد cv2.getPerspectiveTransform پیدا کرد. سپس cv2.warpPerspective را با این ماتریس تبدیل ۳×۳ اعمال کنید.

کد زیر را ببینید:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("sudoku-original.jpg")
rows,cols,ch = img.shape
rows,cols,ch = img.shape
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])
M = cv2.getPerspectiveTransform(pts1,pts2)
dst = cv2.warpPerspective(img,M,(300,300))
plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
plt.show()
Perspective-Transformation

Perspective-Transformation

image -processing-python-opencv

نمایش تصویرRGB با Matplotlib و تابع تبدیل ()cvtColor در OpenCv

.

۱- نمایش تصویرRGB با Matplotlib
۱- ۲خواندن و نمایش تصویر فقط با opencv
۱- ۳خواندن و نمایش تصویر فقط با matplotlib
۱- ۴ خواندن تصویر با opencv و نمایش آن توسط matplotlib
۲- تابع تبدیل ()cvtColor در OpenCv

 

 


نمایش تصویرRGB با Matplotlib

 


می دانیم که کتابخانه  matplotlib ، برای کار با نمودارها و ارقام است. اما اگر خواستیم یک تصویر ساده RGB را نمایش دهیم چه؟ آیا می توانیم با matplotlib انجام دهیم؟

در این قسمت مابه شما نشان می دهیم که چگونه یک تصویر RGB  را با matplotlib فقط در چند خط کد  میشه نشان داد و هرگونه ابهاماتی را که هنگام استفاده از OpenCV و matplotlib وقتی با هم اجرا میشوند، مواجه می شوید روشن کنید.

یک تصویر RGB، که گاهی اوقات به عنوان یک تصویر رنگی واقعی نامیده می شود، به صورت یک آرایه سه بعدی  داده m × n × ۳ ذخیره می شود که کانالهای قرمز، سبز و آبی رنگ را برای هر پیکسل تعریف می کند. رنگ هر پیکسل با ترکیبی از فرمت های فایل های گرافیکی تصاویر RGB، به عنوان تصاویر ۲۴(۸*۳) بیتی ذخیره می شود، حال آنکه هر کدام از کانالهای قرمز، سبز و آبی ۸ بیت هستند.

 

نمایش تصویرRGB توسط Matplotlib

تصویر اصلی

 

خواندن و نمایش تصویر فقط با opencv

کد زیر فقط از opencv برای خواندن و نمایش تصویر استفاده  کرده است. توجه داشته باشید که فرمت رنگ پیش فرض در OpenCV  BGR است (بایت ها معکوس می شوند).

import numpy as np
import cv2
img = cv2.imread('test.png')
cv2.imshow('opencv',img)
cv2.waitKey (0)
cv2.destroyAllWindows ()

خروجی:

نمایش تصویر با استفاده از opencv

نمایش تصویر با استفاده از opencv

 

خواندن و نمایش تصویر فقط با matplotlib

در کد زیر هم فقط از matplotlib برای خواندن و نمایش تصویر  استفاده شده است.

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
image = mpimg.imread("img2.png")
plt.imshow(image)
plt.show()

اولین کاری که ما انجام می دهیم این است که کتابخانه matplotlib را وارد کنیم.

ولی ما فقط از یک قسمتی از این کتابخانه مربوط به خواندن تصویر است به عنوان mpimg  ، که جایگزین  matplotlib.image،  همچنین از plt که جایگزین matplotlib.pyplot است  برای نمایش استفاده کردیم.
ما می توانیم تصویر زیر را ببینیم:

 

نمایش تصویر با استفاده از matplotlib با محور دور تصویر

نمایش تصویر با استفاده از matplotlib با محور دور تصویر

در مورد خلاص شدن از محور  و اعداد از کد زیر استفاده میکنیم:

plt.axis(“off”)
plt.imshow(image)
plt.show()
 
 

خواندن تصویر با opencv و نمایش آن توسط matplotlib

import cv2
import matplotlib.pyplot as plt
image = cv2.imread("img2.png") 
 plt.axis("off") 
plt.imshow(image)
plt.show() 

 

اما نتیجه انتظار نمی رفت تصویر زیر باشد:

خواندن تصویر با opencv و نمایش آن توسط matplotlib

خواندن تصویر با opencv و نمایش آن توسط matplotlib

 

چرا نتیجه مورد انتظار نیست؟

پاسخ به عنوان یک نکته در opencv نهفته است.

 

نکته

OpenCV تصاویر RGB را به عنوان آرایه های چند بعدی Numpy معرفی می کند … اما به ترتیب معکوس! به این معنی که تصاویر در واقع در BGR به جای RGB نشان داده شده است!

پس چگونه این مسئله را حل کنیم؟

 

 تصویر را از BGR به RGB   تبدیل   کنیم:


تابع تبدیل ()cvtColor در OpenCv 


این تابع یک تصویر ورودی را از یک فضای رنگی به یکی دیگر تبدیل می کند.  در صورت تغییر به-از فضای رنگ RGB، منظور از کانال ها باید صریح مشخص شود (RGB یا BGR).

cv2.cvtColor(src, code[, dst[, dstCn]]) → dst

پارامتر ها

src : تصویر ورودی:

۸-bit unsigned, 16-bit unsigned ( CV_16UC… )

dst : تصویر خروجی که اندازه و عمق آن باید مثل تصویر ورودی باشد.

code : کد تبدیل فضای رنگ

dstCn – تعداد کانال ها در تصویر مقصد؛ اگر پارامتر ۰ باشد، تعداد کانال ها به صورت خودکار از src و کد به دست می آید.

چرا در OpenCV  فضای رنگ BGR  است؟

 توجه داشته باشید که فرمت رنگ پیش فرض در OpenCV اغلب به عنوان RGB نامیده می شود اما در واقع BGR است (بایت ها معکوس می شوند).

  بنابراین بایت اول یک تصویر استاندارد ۲۴ بیتی،  ۸ بیتی،  آبی ، بایت دوم سبز  و بایت سوم قرمز خواهد بود. بایت های چهارم، پنجم و ششم پیکسل دوم (آبی، سپس سبز، سپس قرمز)، و غیره

محدوده  معمول برای مقادیر کانال R، G و B عبارتند از:

۰ to 255 for CV_8U images

۰ to 65535 for CV_16U images

۰ to 1 for CV_32F images

CV_8U  – یعنی یک پیکسل می تواند مقادیر ۰-۲۵۵ داشته باشد، این محدوده طبیعی برای اکثر فرمت های تصویری و فیلم است.

CV_32F – پیکسل می تواند هر مقدار بین ۰-۱٫۰ داشته باشد، برای برخی از مجموعه محاسبات در داده ها مفید است – اما باید آن را به ۸ بیت برای ذخیره یا نمایش با ضرب کردن هر پیکسل به ۲۵۵ تبدیل کنید.

CV_8U: یک عدد صحیح بدون علامت ۱ بایت (unsigned char).
CV_32S عدد صحیح علامت دار (int).
CV_32F: نقطه شناور ۴ بایت.

 

import numpy as np
 import matplotlib.pyplot as plt
 import cv2
img = cv2.imread('img2.png')
temp = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(temp)
plt.axis('off')
plt.show()

 

نتیجه اسکریپت ما نشان می دهد که رنگ های تصویر ما درست است.

 



۱-پردازش تصویر با پایتون-OpenCV
۲-آموزش نصب pip در پایتون
۳-
کتابخانه های مورد نیاز پردازش تصویر
۴ – خواندن و نمایش فرمت تصویر در پایتون
۵- نمایش تصویرRGB با Matplotlib و تابع تبدیل ()cvtColor در OpenCv

۶-تغییر فضاهای رنگ- opencv
۷-تقسیم و ادغام کانال های تصویری با opencv

 


آموزش قبلی

 

آموزش بعدی

 

 

پردازش تصویر با پایتون- قسمت هشتم

تابع تبدیل ()cvtColor در OpenCv

این تابع یک تصویر ورودی را از یک فضای رنگی به یکی دیگر تبدیل می کند.  در صورت تغییر به-از فضای رنگ RGB، منظور از کانال ها باید صریح مشخص شود (RGB یا BGR).

cv2.cvtColor(src, code[, dst[, dstCn]]) → dst

پارامتر ها

src : تصویر ورودی:

۸-bit unsigned, 16-bit unsigned ( CV_16UC… )

dst : تصویر خروجی که اندازه و عمق آن باید مثل تصویر ورودی باشد.

code : کد تبدیل فضای رنگ

dstCn – تعداد کانال ها در تصویر مقصد؛ اگر پارامتر ۰ باشد، تعداد کانال ها به صورت خودکار از src و کد به دست می آید.

چرا در OpenCV  فضای رنگ BGR  است؟

 توجه داشته باشید که فرمت رنگ پیش فرض در OpenCV اغلب به عنوان RGB نامیده می شود اما در واقع BGR است (بایت ها معکوس می شوند).

  بنابراین بایت اول یک تصویر استاندارد ۲۴ بیتی  ۸ بیتی،  آبی ، بایت دوم سبز  و بایت سوم قرمز خواهد بود. بایت های چهارم، پنجم و ششم پیکسل دوم (آبی، سپس سبز، سپس قرمز)، و غیره

محدوده  معمول برای مقادیر کانال R، G و B عبارتند از:

۰ to 255 for CV_8U images

۰ to 65535 for CV_16U images

۰ to 1 for CV_32F images

CV_8U  – یعنی یک پیکسل می تواند مقادیر ۰-۲۵۵ داشته باشد، این محدوده طبیعی برای اکثر فرمت های تصویری و فیلم است.

CV_32F – پیکسل می تواند هر مقدار بین ۰-۱٫۰ داشته باشد، برای برخی از مجموعه محاسبات در داده ها مفید است – اما باید آن را به ۸ بیت برای ذخیره یا نمایش با ضرب کردن هر پیکسل به ۲۵۵ تبدیل کنید.

CV_8U: یک عدد صحیح بدون علامت ۱ بایت (unsigned char).
CV_32S عدد صحیح علامت دار (int).
CV_32F: نقطه شناور ۴ بایت (float).

پردازش تصویر با پایتون- قسمت هفتم

در این قسمت، شما نحوه نوشتن یا ذخیره یک تصویر را  با استفاده از تابع ()cv2.imwrite    در OpenCV خواهید آموخت.

 نوشتن یا ذخیره تصویر در OpenCV 

 
از تابع ()cv2.imwrite  برای ذخیره یک تصویر در یک فایل مشخص شده استفاده میشود.

cv2.imwrite(filename, img[, params]) → retval

پارامتر ها

 

filename : نام  برای فایل انتخاب یکنیم 

image: تصویر  برای ذخیره شدن

تابع imwrite تصویر را در فایل مشخص شده ذخیره می کند. فرمت تصویر بر اساس فرمت نام فایل انتخاب شده است. 

 

فشرده سازی تصویر

قبل از ذخیره کردن تصویر، فشرده سازی  جهت  حذف اطلاعات تکراری، انجام میشود. نوع فایل تصویر یا رستر یا بردار است:

تصاویر رستری 

ساخته شده از پیکسل
تغییر اندازه باعث تغییر در کیفیت تصویر میشد.

فرمت های رایج: jpg، png، gif، tif، bmp

تصاویر برداری:

ساخته شده از اشیاء بردار (نه مبتنی بر پیکسل)
می تواند به هر اندازه ای تغییر کند بدون عوض کاه یا افزایش کیفیت
• فرمت های رایج: ai، eps، ps، svg، wmf، pdf

 

vector-raster

https://commons.wikimedia.org/wiki/File:Bitmap_VS_SVG.svg

 

 در پردازش تصویر، تصاویر رستری به کار میرود.

 با استفاده از این تابع imwrite  می توان فقط تصاویر  ۸ بیتی (یا ۱۶ بیت بدون امضای (CV_16U) در حالت تک کانال یا ۳ کانال ( BGR) را ذخیره کرد.( مانند PNG، JPEG 2000 و TIFF) 

امکان استفاده از این تابع برای ذخیره تصاویر PNG با کانال آلفا وجود دارد.

اگر فرمت، عمق یا کانال متفاوت باشد، قبل از ذخیره آن  از ()cvtColor  استفاده کنید تا  تبدیل کنید. در قسمت بعدی در مورد این تابع توضیح خواهیم داد. 

 
 
import numpy as np
import cv2
img = cv2.imread('test.png')
cv2.imshow('image',img)
k = cv2.waitKey(0)
# را فشار بدیم Escاگر
#پنجره بسته میشود
if k == 27: 
cv2.destroyAllWindows()
#اگر این حرف را فشار بدهیم تصویر با نام انتخابی ذخیره میشود.
elif k == ord('s'): 
cv2.imwrite('save.jpg',img)
cv2.destroyAllWindows()

 

🆔@image_Process
🌐https://t.me/image_Process

Image Segmentation

آستانه گذاری درOpenCV

۱- Image Segmentation
۱- آستانه گداری(Threshold) تصویر چیست؟


بخشبندی تصویر (Image Segmentation)

هدف پردازش تصویر دیجیتال، استخراج اطلاعات مفید(آبجکت، شی، ۲۵۵، ۱، روشن) از تصاویر، بدون کمک انسان است.

بخشبندی،  تصویر را به ناحیه هایی با پیکسل هایی که دارای ویژگیهای مشابه(منظم و یکنواخت) هستند، تقسیم میکند.این ویژگی ها میتوانند به عنوان مثال: سطح خاکستری، رنگ، بافت و … باشند. در بخشبندی تقسیم تصاوبر به نواحی  غیر یکسان میباشد، طوری که با هم اشتراکی نداشته باشند تا آن را برای تجزیه و تحلیل آسان تر و معنادارتر کند.

 

 

خروجی بخشبندی

 

۱) پیکسلهای لبه یا مرز یک بخش. کاربرد:  گوشه ها یا حالت  ناحیه ی مد نظر  را مشخص میکند.

۲) تمام پیکسلهای درون یک بخش. کاربرد: ویژگیهای درونی بخش های تصویر مثل بافت، رنگ و … را مشخص میکند.

لبه: به تغییرات ناگهانی در سطوح خاکستری، تصویر لبه گفته میشود. لبه ها در مرز بین دو ناحیه اتفاق می افتد. 

 

تکنیکهای بخشبندی

۱)  contextual (بخش بندی بر اساس لبه ها)

  تصویر،  با آشکار کردن نقاط یا مرزهایی که در محل آنها،  تغییرات سریع سطوح خاکستری وجود دارند، بخش بندی میشود. 

Contexuall

۲) non-contextual (بخش بندی بر اساس نواحی)

 بر اساس شباهت سطوح خاکستری ، تصویر،  در ابتدا با آستانه گذاری، ناحیه را گسترش داده و با ادغام کردن  بخش ها، بخشبندی میشود. همین جا اشاره کنم که آستانه گذاری از نوع non-contextual میباشد.(ماسکهای آشکار ساز لبه ها، همانند فیلتر بالاگذر حوزه فرکانس  که در قسمتهای بعدی توضیح داده میشوند، میباشند.)

non
 

کاربرد بخشبندی

به عنوان مثال، با استفاده از بخشبندی، میتوان تعداد مربع یا مستطیل را در تصویر شمرد. یا تشخیص چهره ، تشخیص عابر پیاده، اثر انگشت و … را انجام داد. از طرفی گاهی اوقات اصلا لازم نیست برای کسب اطلاعاتی از یک عکس کل تصویر را پردازش کرد. به همین دلیل با استفاده از بخش بندی فقط ناحیه مورد نظر پردازش میشود.

آستانه گداری(Threshold) تصویر چیست؟

آستانه‌گذاری  مناسب‌ترین و ساده ترین تکنیک بخش بندی non-contextual است.
با اعمال آستانه‌گذاری بر روی تصویر در مقیاس خاکستری، تصویری باینری(۰و۱) بدست می‌آید که تصویر به دو بخش کاملا جدا از هم تقسیم میشود.یکی از آنها حاوی پیکسل هایی با مقادیر داده ورودی کوچکتر از آستانه و دیگری مربوط به مقادیر ورودی است که برابر آستانه یا بیشتراز آن هستند. مناطق اول و دوم معمولا به ترتیب با برچسب صفر (۰) و غیر صفر (۱) برچسب گذاری می شوند. آستانه گذاری ، ممکن است دارای چند آستانه باشد که تصویر را به چند بخش مجزا تقسیم میکنند.

برای تصاویر رنگی، سه آستانه(برای هر کانال) باید مشخص شود.

به عبارت دیگر آستانه گذاری شامل تقسیم یک تصویر به دو منطقه است: یک منطقه آبجکت و یک منطقه پس زمینه.
threshold e

تصویر زیر را با دقت مشاهده کنید:

threshold

https://www.learnopencv.com

چند عدد می بینید؟
اکثر شما اعداد زیر را می بینید:
۳۲ (آه، بله، به دقت نگاه کنید)، ۶۴، ۱۰۰، ۱۲۸، ۱۸۰، ۲۰۰ و ۲۵۵٫ اما در تصویر، اعداد بیشتری وجود دارد که به چشم نمیاد.

برای دیدن یک نسخه آستانه گذاری از تصویر اصلی، روی تصویر حرکت کنید .   متوجه خواهید شد که تمام اعداد، سرتاسر  سفید هستند (به عنوان مثال، آنها دارای یک مقدار خاکستری ۲۵۵ میباشند ) و عدد اضافی ۵ وجود دارد. شما متوجه  عدد ۵  در تصویر اصلی  نشدید چون ارزش خاکستری آن ۵ بود.

در حقیقت تمام اعداد در تصویر اصلی یک مقدار خاکستری  برابر با عدد دارند. بنابراین ۲۵۵ روشنترین و ۵ تاریک ترین است.

 خواندن اعداد در تصویر آستانه گذاری شده  آسان تر از خواندن اعداد در تصویر اصلی است. جای تعجب نیست که یک الگوریتم  تصویر آستانه گذاری شده، بسیار ساده تر از تصویر اصلی،  پردازش می کند.
تمام الگوریتم های آستانه گذاری، یک تصویر منبع (src) و مقدار آستانه (thresh) به عنوان ورودی میگیرند، و با مقایسه مقادیر پیکسل در پیکسل  تصویر منبع (x، y) با آستانه،  یک تصویر خروجی (dst) تولید می کند. اگر src (x، y)> thresh باشد، سپس (dst (x، y یک مقدار را تعیین می کند. در غیر این صورت، (dst (x، y مقدار دیگری را ایجادمی کند.

سه روش آستانه ‘گذاری داریم که در قسمتهای بعدی توضیح داده خواهند شد:
+ Simple thresholding
+ Adaptive thresholding
+ Otsu’s thresholding

 

image -processing-python-opencv

تغییر فضاهای رنگ- opencv

۱- تغییر فضاهای رنگ- opencv
۲- HSV
۲-۱ Hue
۲-۳ Value
۲-۴ Saturation or intensity
۲-۵ HSV چه کاربردی دارد؟
۲-۵ استخراج سه شی رنگی از تصویر
۲-۵ برای پیدا کردن مقادیر HSV چکار باید کرد؟
۳- Grayscale


تغییر فضاهای رنگ

 

در این آموزش،  نحوه ی  تبدیل تصاویر از یک فضای رنگی به دیگری را  یاد خواهیم گرفت. مانند: BGR \leftrightarrowGray, BGR \leftrightarrow HSV. علاوه بر این، یک برنامه ایجاد می کنیم که ۳ شیء رنگی را از یک تصویر استخراج کند، و در ادامه به تصاویر خاکستری می پردازیم. در OpenCV، بیش از ۱۵۰ روش تبدیل فضای رنگ وجود دارد. اما تنها دو مورد که بیشتر مورد استفاده قرار می گیرند، به BGR ↔ Gray و BGR ↔ HSV را توضیح می دهیم .


برای تبدیل رنگ، از تابع (cv2.cvtColor (input_image، flag استفاده می کنیم که در آن پرچم، نوع تبدیل را تعیین می کند.

برای تبدیل  BGR →Gray،   از پرچم cv2.COLOR_BGR2GRAY و برای BGR → HSV، از پرچم cv2.COLOR_BGR2HSV استفاده می کنیم. .
برای دریافت پرچم های دیگر، فقط دستورات زیر را در ترمینال پایتون خود اجرا کنید:

 import cv2
flags = [i for i in dir(cv2) if i.startswith('COLOR_')]
 print flags

 (HSV)

یک فضای رنگی مناسب، مدل رنگی HSV است. همانطور که گفتم قراره اشیاء داخل یک تصویر را  از آن جدا کنیم. تشخیص یا استخراج اشیاء در خیلی جاها از جمله کنترل وسایل نقلیه و  ترافیک کاربرد دارد. در واقع در این مدل، دو ویژگی روشنایی و شدت نور، کمک زیادی می کند. این مدل، دارای سه ویژگی متمایز است:

Hue


نام رنگ (زرد، سبز، صورتی و..) . 

Value

 

روشنایی یا تیرگی رنگ (خاکستری)



Saturation or intensity

 اشباع یا شدت نور  : خلوص رنگ، روشنایی یا تاریکی ( طیف رنگی قرمز).

 

نکته

در فضای رنگ HSV، محدوده رنگ [۰،۱۷۹]، محدوده اشباع [۰،۲۵۵] و محدوده مقدار [۰،۲۵۵] است. نرم افزار های مختلف از مقیاس های مختلف استفاده می کنند. بنابراین اگر مقادیر OpenCV را با آنها مقایسه کنید، باید این محدوده ها را نرمال کنید.

مدل رنگ HSV چه کاربردی دارد؟

 مثلا اگر  بخواهیم  قطعاتی از یک تصویر که در محدوده رنگ آبی یا  قرمز یا سبز  قرار دارند را شناسایی کنیم از این مدل استفاده می کنیم.

در HSV، رنگ آمیزی ساده تر از BGR رنگی است. 

 

 

hsv

 

hsv
hsv
hsv

HSV

 

استخراج سه شی رنگی از تصویر

رسیدیم به برنامه ای که در ابتدای این بخش به آن اشاره کردیم. در واقع قراره یک جوررایی اشیا را ردیابی کنیم.  الگوریتم، به صورت زیر است:

  1. برنامه،  تصویر را بگیرد
  2. تبدیل از فضای رنگ BGR به HSV انجام دهد.

 

ما تصویر HSV را برای طیف وسیعی از رنگ آبی وقرمز و سبز، آستانه گذاری(در جلسات بعدی آموزش داده می شود.) می کنیم:

در حال حاضر تنها ۳ شیء آبی و سبز و قرمز را استخراج می کنیم، می توانیم هر آنچه را که می خواهیم انجام دهیم.
کد:

 

import cv2
import numpy as np
img = cv2.imread('bgrtohsv.png')
#تبدیل فضای رنگ bgr to hsv
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV )

lower_blue = np.array([110,50,50])
upper_blue = np.array([120,255,255])

lower_green = np.array([50,50,50])
upper_green = np.array([60,255,255])

lower_red = np.array([0,50,50])
upper_red = np.array([0,255,255])
#آستانه گیری(cv2.inRange())
maskb = cv2.inRange(hsv, lower_blue, upper_blue)
maskg = cv2.inRange(hsv, lower_green, upper_green)
maskr = cv2.inRange(hsv, lower_red, upper_red)
 # and تصویر اصلی با ماسک 
#میشود (cv2.bitwise_and())
resb = cv2.bitwise_and(img,img, mask= maskb)
resg = cv2.bitwise_and(img,img, mask= maskg)
resr = cv2.bitwise_and(img,img, mask= maskr)

cv2.imshow('original image',img)
cv2.imshow('maskb',maskb)
cv2.imshow('maskg',maskg)
cv2.imshow('maskr',maskr)

cv2.imshow('resb',resb)
cv2.imshow('resg',resg)
cv2.imshow('resr',resr)

cv2.waitKey()
cv2.destroyAllWindows()

rgb-hsv

استخراج سه شی رنگی از تصویر

 

نکته

 نویز کمی در تصویر وجود دارد. خواهید دید که چگونه آنها را در قسمت های  بعد حذف می کنیم. این ساده ترین روش در ردیابی شی است.

 

برای پیدا کردن مقادیر HSV چکار باید کرد؟

بسیار ساده است و شما می توانید از همان تابع ()cv2.cvtColor  استفاده کنید.

برای مثال، برای پیدا کردن مقدار HSV سبز، دستورات زیر را در ترمینال پایتون امتحان کنید:

 green = np.uint8([[[0,255,0 ]]])
 hsv_green = cv2.cvtColor(green,cv2.COLOR_BGR2HSV)
 print hsv_green
[[[ ۶۰ ۲۵۵ ۲۵۵]]]

اکنون شما می توانید [H-10، ۱۰۰،۱۰۰] و [H + 10، ۲۵۵، ۲۵۵] را به ترتیب پایین تر و بالاتر محدوده رنگ  قرار دهید.

به غیر از این روش، می توانید از هر ابزار ویرایش عکس مانند GIMP یا هر مبدل آنلاین برای پیدا کردن این ارزش ها استفاده کنید.

اما فراموش نکنید که محدوده های HSV را تنظیم کنید.

 

تصاویر Grayscale(خاکستری)

دوربین های قدیمی فقط  قادر به نمایش تصاویر مونوکروم  یا تک رنگ  بودند. درکل سنسور دوربین تنها شدت نور را ثبت میکند که شدت نور طیفی خاکستری ایجاد میکند.

ما با تصاویر خاکستری که نوعی از تصاویر مونوکروم هستند،  کار خواهیم کرد.

Grayscale

http://hamamatsu.magnet.fsu.edu

تصاویر خاکستری فقط دارای یک کانال رنگی(۸بیتی) در مقیاس ۰ تا ۲۵۵ هستند که نشان دهنده روشنایی آن پیکسل است، ۰ کاملا تاریک (سیاه) و ۲۵۵ کاملا روشن (سفید) است.

Grayscale

Grayscale

 

وقتی فیلتر های رنگی بر روی سنسور دوربین قرار میگیرد به ازای هر رنگ قرمز ، ابی  یا سبز ،  یک شدت  نور جدا (خاکستری) درست  می کنند که با ترکیب آنها با هم عکس های رنگی ایجاد می شوند.

تصویر زیر مثال خیلی خوبی  از کانال های مختلف تصویر رنگی است، که با یکی از نرم افزار های ویرایش عکس که من از gimp استفاده کردم را ببینید.  در واقع با ترکیب کانال های سمت راست، تصویر رنگی سمت چپ ایجاد می شود:

مثلا به رنگ سبز دقت کنید، فقط قسمتی که رنگ سبز داریم سفید وبقیه قسمت ها سیاه است. کانال سبز  یک کانال ۸ بیتی که به صورت   [۰,۲۵۵,۰]:rgb مقدار دهی می شود و نشان دهنده ی این است که هر چه شدت نور به سمت ۲۵۵ باشد رنگ سبز بیشتر و هر چه به سمت ۰ باشد رنگ سبز کمتری داریم و در مورد کانال های دیگر هم همین استدلال را میشه کرد.

Grayscale

Grayscale

تبدیل تصویر به مقیاس خاکستری به ما یک  آرایه  دو بعدی و تنها یک کانال که ۸ بیت باشد  میدهد. یک جورایی پردازش راحتر و سریع تر و زوم روی یک کانال خاص است.

import numpy as np
import cv2
import matplotlib.pyplot as pltimg = cv2.imread('test.jpg')
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
#تصویر خاکستری به عنوان آراه ای دوبعدیprint(gray_img)
[[۲۵۰ ۲۵۰ ۲۵۰ ..., ۲۵۰ ۲۵۰ ۲۵۰]
[۲۵۰ ۲۵۰ ۲۵۰ ..., ۲۵۰ ۲۵۰ ۲۵۰]
[۲۵۰ ۲۵۰ ۲۵۰ ..., ۲۵۰ ۲۵۰ ۲۵۰]
...,
[۲۵۰ ۲۵۰ ۲۵۰ ..., ۲۵۰ ۲۵۰ ۲۵۰]
[۲۵۰ ۲۵۰ ۲۵۰ ..., ۲۵۰ ۲۵۰ ۲۵۰]
[۲۵۰ ۲۵۰ ۲۵۰ ..., ۲۵۰ ۲۵۰ ۲۵۰]]
 print (gray_img.shape)&amp;lt;/span&amp;gt;
(۶۴۰, ۶۴۰)
 print (img.dtype)
uint8

و در نهایت تبدیل به تصویر خاکستری:

import numpy as np
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('test.jpg')
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
plt.imshow(cv2.cvtColor(gray_img, cv2.COLOR_GRAY2RGB))
plt.show()
grayscale

تبدیل به تصویر خاکستری

 



۱-پردازش تصویر با پایتون-OpenCV
۲-آموزش نصب pip در پایتون
۳-
کتابخانه های مورد نیاز پردازش تصویر
۴ – خواندن و نمایش فرمت تصویر در پایتون
۵- نمایش تصویرRGB با Matplotlib و تابع تبدیل ()cvtColor در OpenCv

۶-تغییر فضاهای رنگ- opencv
۷-تقسیم و ادغام کانال های تصویری با opencv

 

image -processing-python-opencv

خواندن و نمایش و نوشتن تصویر در پایتون

۱- پردازش تصویر چیست؟
۲- فرمت تصویر
۳ – نمایش فرمت تصویر
۴ – کانال
۵- خواندن یا وارد کردن تصویر
۶ – نمایش تصویر در OpenCv
۷ – نوشتن یا ذخیره تصویر در OpenCV
۷-۱ – فشرده سازی تصویر
۷-۲ – تصاویر رستری
۷-۳ – تصاویر برداری


پردازش تصویر چیست؟

پردازش تصویر، فرایند دستکاری یا انجام عملیات بر روی تصاویر، برای دستیابی به یک اثر معین (ایجاد یک تصویر سیاه و سفید به عنوان مثال) یا گرفتن اطلاعاتی از یک تصویر(مانند شمردن تعداد دایره ها یا مربع ها ) توسط  یک کامپیوتر  است.

 

شروع کار پردازش تصویر  با  ایمپورت ها است. ما از کتابخانه های  cv2، numpy و کمی از matplotlib (اغلب به عنوان یک روش راحت برای نمایش تصاویر) استفاده می کنیم .

matplotlib : کتابخانه ای برای رسم نمودارها

matplotlib.pyplot: هر تابع pyplot باعث تغییراتی در شکل می شود: به عنوان مثال شکلی را  می گیرد،  یک منطقه ترسیم در شکل ایجاد می کند،   چند خط در یک منطقه  از شکل ترسیم میکند،  شکل را با برچسب و غیره تزئین می کند و … .

NumPy : کتابخانه ای  برای محاسبات علمی با پایتون است. این شامل موارد زیر است:
۱) یک آبجکت آرایه n بعدی قدرتمند

۲) ابزاری برای ادغام C / C ++ و کد Fortran 

۳) …..

import cv2,matplotlib
import numpy as np
import matplotlib.pyplot as plt

فرمت تصویر

 

بسيار خوب! ما نیاز داریم تصاویر را بخوانیم تا فرمتی که آنها نشان میدهند را بفهمیم.در OpenCv تصاویر به صورت زیر آرایه ۳ بعدی numpy نمایش داده می شوند. یک تصویر رنگی  از ردیف های پیکسل تشکیل شده و هر پیکسل با آرایه ای از مقادیر رنگ نمایش داده می شود.

BGR

BGR

 

نمایش فرمت تصویر

(اساسا یک آرایه ۳ بعدی از اطلاعات رنگ پیکسل، در قالب BGR):

print( img)
[[[۱۸۳ ۱۸۳ ۱۸۳][۱۰۲ ۱۰۲ ۱۰۲][۱۰۲ ۱۰۲ ۱۰۲]..., [۱۰۲ ۱۰۲ ۱۰۲][۱۰۲ ۱۰۲ ۱۰۲][۱۰۲ ۱۰۲ ۱۰۲]]

[[۱۰۲ ۱۰۲ ۱۰۲][۱۹۳ ۱۹۳ ۱۹۳][۲۵۳ ۲۵۳ ۲۵۳]..., [۱۶۸ ۱۶۸ ۱۶۸][۲۵۴ ۲۵۴ ۲۵۴][۱۹۳ ۱۹۳ ۱۹۳]]
[[۲۵۳ ۲۵۳ ۲۵۳][۲۵۲ ۲۵۲ ۲۵۲][۲۵۲ ۲۵۲ ۲۵۲]..., [۱۶۷ ۱۶۷ ۱۶۷][۲۵۳ ۲۵۳ ۲۵۳][۲۵۲ ۲۵۲ ۲۵۱]]
..., [[۲۵۵ ۲۵۵ ۲۴۷][۲۵۵ ۲۵۵ ۲۴۷][۲۵۴ ۲۵۴ ۲۵۱]..., [ ۶۸ ۶۲ ۵۶][۲۰۲ ۱۹۷ ۱۹۱][۱۳۶ ۱۲۳ ۱۰۹]]
[[۲۵۵ ۲۵۵ ۲۴۷][۲۵۵ ۲۵۵ ۲۴۶][۲۵۵ ۲۵۵ ۲۵۰]..., [۱۲۱ ۱۱۶ ۱۱۱][۱۸۶ ۱۷۹ ۱۷۳][۱۲۱ ۱۱۰ ۹۷]]
[[۲۵۵ ۲۵۵ ۲۴۴][۲۵۵ ۲۵۵ ۲۴۳][۲۵۵ ۲۵۵ ۲۴۶]..., [۱۷۸ ۱۷۲ ۱۶۶][۱۴۵ ۱۳۶ ۱۲۷][۱۰۷ ۹۶ ۸۴]]]  

اینجا [ ۱۴۵ ۱۳۶ ۱۲۷] و… ، مقادیر یک پیکسل، آبی، قرمز و سبز (BGR) هستند. توجه داشته باشید که OpenCV به طور پیش فرض یک تصویر را در قالب BGR بارگذاری می کند.

 

کانال 

در تصاویر رنگی هر پیکسل دارای ۳ زیر پیکسل است که به هر کدام از این زیر پیکسل ها کانال گفته میشود. یعنی الان در تصویر بالا ما سه کانال آبی، قرمز و سبز  که توسط آرایه نمایش داده  شده است ، داریم.


خواندن یا وارد کردن تصویر

BGR-RGB

تصویر اصلی

 

import numpy as np 
import cv2
img = cv2.imread('test.jpg') 
print(img)

برای خواندن تصویر در opencv، از تابع imread استفاده می کنیم. آرگومان این تابع آدرس محل ذخیره تصویر است. 

cv2.imread(filename[, flags]) → retval
cv2.imread('test.jpg',0 or 1 or -1)

آرگومان اول نام و محل تصویر  که داخل کوتیشن است.  تصویر باید در داخل پوشه ای باشد که فایل پایتون  در آن قرار  دارد  وگرنه باید مسیر کامل تصویر  نوشته شود.

آرگومان دوم یک پرچم است که مشخص می کند چگونه تصویر را باید خواند.

۱) cv2.IMREAD_COLOR: تصویر رنگی را بارگیری می کند و هر گونه شفافیت تصویر را نادیده می گیرد. این پرچم پیش فرض است:

پرچم بزرگتر از ۰ تصویر رنگی سه کاناله(قرمز، سبز،آبی)  و عمق ۸ بیتی برمیگرداند. BGR

cv2.imread('test.jpg')
or
cv2.imread('test.jpg',1)
or
cv2.imread('test.jpg',cv2.IMREAD_COLOR)

۲) cv2.IMREAD_GRAYSCALE: بارگیری تصویر در حالت خاکستری یک کانال و عمق ۸ بیتی:

cv2.imread('test.jpg',0)

 

۳) cv2.IMREAD_UNCHANGED: تصویر را به عنوان  کانال آلفا بارگیری می کند:

اگر پرچم کوچکتر از ۰ باشد تصویر ۴ کاناله برمیگرداند. تابع وقتی تصویر ۱۶/۳۲ بیتی برمیگرداند که تصویر ورودی دارای یک همچین عمقی باشد وگرنه آ ن را به ۸ بیتی تبدیل میکند

cv2.imread('test.jpg',-1)
or
cv2.imread('test.jpg',cv2.IMREAD_UNCHANGED)

نکته

به جای این سه پرچم، به سادگی می توانید عدد صحیح ۱، ۰ یا -۱ را منتقل کنید.

کد زیر را ببینید:

 import numpy as np
import cv2
img = cv2.imread('test.jpg',0)

 

همانطور که در قطعه کد بالا  ملاحظه میکنید بعد از خواندن تصویر آن را در متغییری به نام img قرار میدهیم. از این متغیر برای نمایش تصویر، نوشتن تصویر و … استفاده میکنیم.

هشدار

حتی اگر مسیر تصویر اشتباه باشد، خطایی نخواهد داشت، اما img  چاپ نمیشود.

img = cv2.imread('test.jpg')

 نمایش تصویر در  OpenCv

 cv2.imshow()

 

از تابع ()cv2.imshow،  برای نمایش تصویر در یک پنجره استفاده می کنیم. پنجره به طور خودکار با اندازه تصویر متناسب می شود. این تابع دو آرگومان دارد. اولین آرگومان نام پنجره است که یک رشته میباشد. آرگومان دوم تصویری است که با خواندن  آن، در یک متغیر ذخیره کردیم. شما میتوانید تعداد بیشتری پنجره با یک تصویر ایجاد کنید ولی باید نام تصاویر متفاوت باشد. 

import cv2
img = cv2.imread('test.png') 
cv2.imshow('opencv',img)
c = cv2.waitKey(0)
cv2.destroyAllWindows()
11

cv2.imshow()

 

 

 

 

Waits for a pressed key(منتظر برای فشار دادن یک کلید ازصفحه کلید).  یک تابع اتصال به  صفحه کلید است. یک آرگومان دارد که زمان در میلی ثانیه است.

cv2.waitKey([delay]) → retval

 

پارامتر ها

delay 

تاخیرزمان به میلی ثانیه . ۰ به عنوان آرگوان ورودی مقدار ویژه ای است به معنای “بی وقفه” است.

اگر  (\texttt{delay}\leq 0 ) باشد یعنی پنجره برای مدت نامحدودی منتظر می ماند تا زمانی یک کلید از صفحه کلید را فشار دهیم و آن بسته شود. 

اگر مقدار delay  مثبت باشد مثلا ۱۰۰۰، بعد از یک ثانیه پنجره به صورت خودکار بسته میشود. 

این تابع یا کد کلید فشار داده شده از صفحه کلید را بر میگرداند یا -۱(یعنی کلیدی  قبل از زمان مشخص فشار داده نشده . برای من ۲۵۵ بر میگرداند.) 

نکته

این تابع زمانی کار میکند که  حداقل یک پنجره

در حالی که OpenCV برای استفاده در برنامه های کاربردی تمام عیار طراحی شده است و می تواند در چارچوب های عملکردی غنی از UI (مانند Qt *، WinForms * یا Cocoa *) یا بدون استفاده از رابط کاربری مورد استفاده قرار گیرد، گاهی اوقات لازم است که سرعت عمل را امتحان و نتایج را تصور کنید. این همان چیزی است که ماژول HighGUI برای آن طراحی شده است.

 

destroyAllWindows

تابع destroyAllWindows تمام پنجره های باز شده HighGUI را از بین می برد.

قطعه کد زیر نشان میدهد که اگر کلیدی فشار داده نشود تصویر بی وقفه نمایش داده میشود، تا زمانی که یک کلید فشار دهیم یا خودمان پنجره را ببندیم.

import cv2
def sufra():
 img = cv2.imread('test.png')
 cv2.imshow('image', img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()
 print ("waitkey")

if __name__ == '__main__':
 sufra()

waitkey

با قطعه کد زیر، فشار دادن یا ندادن کلید از صفحه کلید، کد اسکی آن برگردانده میشود.

۱۰۶ کد اسکی حرف h  میباشد.

import cv2
def sufra():
 img = cv2.imread('test.png')
 cv2.imshow('image', img)
 key=cv2.waitKey(1000)
 cv2.destroyAllWindows()
 print (key)
 print ("waitkey")

if __name__ == '__main__':
 sufra()

۲۵۵
waitkey
۱۰۴
waitKey

در کد  از دستور if استفاده کردیم که فقط با  فشار دادن کلید q،پنجره بسته میشود. 

 

ord()

تابع ()ord یک رشته یا کاراکتر میگرد و کد اسکی آن را بر میگرداند.

import cv2
def sufra():
 img = cv2.imread('test.png')
while True:
 cv2.imshow('image', img)
 if cv2.waitKey(1)  == ord('q'):
 cv2.destroyAllWindows()
 print ("q")
 break;

if __name__ == '__main__':
 sufra()

waitKey

 

() cv2.destroyAllWindows

به راحتی تمامی پنجره هایی که ایجاد کردیم  را از بین می برد. اگر می خواهید پنجره خاصی را از بین ببرید، از تابع ()cv2.destroyWindow  استفاده کنید.

cv2.destroyAllWindows() → None

نکته

یک مورد خاص وجود دارد که شما قبلا می توانید یک پنجره ایجاد کنید و تصویر را بعدا بارگذاری کنید. در این صورت، می توانید مشخص کنید که آیا پنجره قابل اندازه بندی مجدد است یا نه.
  این کار توسط تابع () cv2.namedWindow انجام می شود. به طور پیش فرض، پرچم cv2.WINDOW_AUTOSIZE است.اما اگر شما پرچم را به عنوان cv2.WINDOW_NORMAL مشخص کنید،می توانید پنجره را تغییر دهید. هنگامی که تصویر در ابعاد بزرگ، مفید خواهد بود: 

cv2.namedWindow(winname[, flags]) → None

پارامترها

name : نامی برای پنجره که ممکنه به عنوان شناسه هم استفاه شود

flags(پرچم های پنجره):

WINDOW_NORMAL  :   اگر تنظیم شده باشد، کاربر می تواند پنجره را تغییر دهد (بدون محدودیت).
WINDOW_AUTOSIZE  : اگر تنظیم شده باشد، اندازه پنجره به صورت خودکار براساس تصویر نمایش داده می شود ، و شما نمی توانید اندازه پنجره را به صورت دستی تغییر دهید.
WINDOW_OPENGL اگر  : تنظیم شده باشد، پنجره با پشتیبانی OpenGL ایجاد خواهد شد.

import cv2
img = cv2.imread('test.png')
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow('image',img)
cv2.waitKey(0)
k=cv2.destroyAllWindows()
print(k)
None

نوشتن یا ذخیره تصویر در OpenCV 

 

cv2.imwrite()


از تابع ()cv2.imwrite  برای ذخیره یک تصویر در یک فایل مشخص شده استفاده میشود.

cv2.imwrite(filename, img[, params]) → retval

پارامتر ها

 

filename : نام  برای فایل انتخاب یکنیم 

image: تصویر  برای ذخیره شدن

تابع imwrite تصویر را در فایل مشخص شده ذخیره می کند. فرمت تصویر بر اساس فرمت نام فایل انتخاب شده است. 

 

فشرده سازی تصویر

قبل از ذخیره کردن تصویر، فشرده سازی  جهت  حذف اطلاعات تکراری، انجام میشود. نوع فایل تصویر یا رستر یا بردار است:

تصاویر رستری 

ساخته شده از پیکسل
تغییر اندازه باعث تغییر در کیفیت تصویر میشد.

فرمت های رایج: jpg، png، gif، tif، bmp

تصاویر برداری

ساخته شده از اشیاء بردار (نه مبتنی بر پیکسل)
می تواند به هر اندازه ای تغییر کند بدون عوض کاه یا افزایش کیفیت
• فرمت های رایج: ai، eps، ps، svg، wmf، pdf

 

vector-raster

Bitmap-vector-raster

https://commons.wikimedia.org/wiki/File:Bitmap_VS_SVG.svg

 

 در پردازش تصویر، تصاویر رستری به کار میرود.

 با استفاده از تابع imwrite،  می توان فقط تصاویر  ۸ بیتی (یا ۱۶ بیت بدون امضای (CV_16U) در حالت تک کانال یا ۳ کانال ( BGR) را ذخیره کرد). ( مانند PNG، JPEG 2000 و TIFF) 

امکان استفاده از این تابع برای ذخیره تصاویر PNG با کانال آلفا وجود دارد.

اگر فرمت، عمق یا کانال متفاوت باشد، قبل از ذخیره آن  از ()cvtColor  استفاده کنید تا  تبدیل کنید. در قسمت بعدی در مورد این تابع توضیح خواهیم داد. 

import numpy as np
import cv2
img = cv2.imread('test.png')
cv2.imshow('image',img)
k = cv2.waitKey(0)
# را فشار بدیم Escاگر
#پنجره بسته میشود
if k == 27: </span>
cv2.destroyAllWindows()
#اگر این حرف را فشار بدهیم تصویر با نام انتخابی ذخیره میشود.
elif k == ord('s'): </span>
cv2.imwrite('save.jpg',img)</span>
cv2.destroyAllWindows()</span>


۱-پردازش تصویر با پایتون-OpenCV
۲-آموزش نصب pip در پایتون
۳-
کتابخانه های مورد نیاز پردازش تصویر
۴ – خواندن و نمایش فرمت تصویر در پایتون
۵- نمایش تصویرRGB با Matplotlib و تابع تبدیل ()cvtColor در OpenCv

۶-تغییر فضاهای رنگ- opencv
۷-تقسیم و ادغام کانال های تصویری با opencv

 


آموزش قبلی

آموزش بعدی